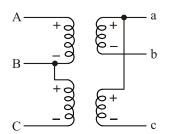
第一部份:電工機械

- 1. 某 2 kVA, 200/100 V, 60 Hz 之單相變壓器做開路與短路試驗,已知下列數據,求高壓側等值電阻、電抗為多少?
 - (A) $0.6 \Omega \cdot 0.8 \Omega$
 - (B) $0.8 \Omega \cdot 0.6 \Omega$
 - (C) $0.2 \Omega \cdot 0.46 \Omega$
 - (D) $0.46 \Omega \cdot 0.2 \Omega$

	伏特 表讀値	安培 表讀値	瓦特 表讀値
開路試驗	未知	0.8 A	20 W
短路試驗	10 V	未知	80 W

- 2. 承上題,此變壓器於功因 0.8 落後時之電壓調整率爲若干?
 - (A) 0.05
 - (B) 0.048
 - (C) 0.1
 - (D) 0.096
- 3. 有一三相、4 極,60 Hz,220/380 V,1.5 kW 作星型連接之同步電動機,若激磁電流 $0.8 \, \mathrm{A}$,以動力計作 負載試驗,動力計半徑爲 $0.26 \, \mathrm{m}$,外加電壓爲 $220 \, \mathrm{V}$ 時,磅秤讀値爲 $3 \, \mathrm{kg}$,採用兩個瓦特表測量三相功率,分別爲 $\mathrm{W_1} = 780 \, \mathrm{W}$, $\mathrm{W_2} = 900 \, \mathrm{W}$,每相繞組電流 $4.5 \, \mathrm{A}$,求同步電動機之輸入無效功率?
 - (A) 1680 VAR
 - (B) 2909 VAR
 - (C) 208 VAR
 - (D) 120 VAR
- 4.1 特斯拉等於:
 - (A) 10⁸ 高斯
 - (B) 10⁻⁴ 高斯
 - (C) 10⁻⁸高斯
 - (D) 10⁴ 高斯
- 5. 產生高電壓低電流之電樞繞組宜用下列何者?
 - (A) 疊繞
 - (B) 波繞
 - (C) 環式繞
 - (D) 蛙腿繞
- 6. 有一 1/2 HP,110 V,60 Hz 電容啟動式單相感應電動機,行駛繞組阻抗為 $3+j4\Omega$,啟動繞組阻抗為 $8+j3\Omega$,欲使啟動繞組電流相位超前運轉繞組電流相位達 90 度,則啟動繞組應串連多少電容量之電容器?

(A) $221 \mu F$


(B) 589 µF

(C) $295 \mu F$

(D) $259 \, \mu F$

- 7. 有關三相感應之堵住試驗,下列敘述何者正確?
 - (A) 可測得感應機之定子側銅損
 - (B) 於定子側加入約額定電壓之 5~20%電壓測定
 - (C) 測定時,須保持轉子以額定轉速運轉
 - (D) 感應機堵住試驗即爲變壓器之開路試驗

- 8. 如圖(一)所示單相變壓器兩台做接線,一次側加上三相交流平衡電壓,若各變壓器之二次電壓均為 200 V,則 bc 間之電壓為?
 - (A) 173 V
 - (B) 200 V
 - (C) 283 V
 - (D) 346 V

- 9. 某台分激發電機額定爲 250 V,10 kW,電樞電阻 0.4Ω ,分激場繞阻 50Ω ,鐵損及機械損共 350 W,求此電機的半載效率?
 - (A) 0.73
 - (B) 0.8
 - (C) 0.75
 - (D) 0.836
- 10. 有關插塞制動之方法,下列敘述何者正確?
 - (A) 運用於直流串激電動機時,改變電樞繞組接線即可
 - (B) 運用於直流分機電動機時,改變電源極性即可
 - (C) 三相感應機欲使用插塞制動,將啓動繞組反接即可
 - (D) 單相感應機欲使用插塞制動,將啟動繞組與運轉繞組反接即可
- 11. 三相同步發電機中,各相繞組之三次諧波互差多少電工角度?
 - (A) 90°
 - (B) 120°
 - (C) 0°
 - (D) 180°
- 12. 有關特性曲線之敘述,下列何者正確?
 - (A) 分激電動機之轉矩特性曲線(T-Ia)爲二次方曲線
 - (B) 感應電動機之鐵損與外加電源之關係爲二次方曲線
 - (C) 同步發電機之短路特性曲線(I_f-I_a)具有下垂特性
 - (D) 感應電動機之轉矩與負載之關係爲一線性直線
- 13. 有關可建立電壓之直流串激發電機,下列敘述何者錯誤?
 - (A) 若改變轉向則無法建立電壓
 - (B) 欲建立極性相反之電壓,只需將場繞組鐵心倒裝
 - (C) 改變電樞轉向與場繞組接線反接,應電勢極性相反
 - (D) 改變電樞轉向且電樞繞組接線與場繞組接線同時反接,可以建立電壓
- 14. 如圖(二)所示,一根長 2 公尺導體通以 10 A 電流,垂直置於磁通 0.2 韋伯之磁場中,若磁極面積為 200 公分×200 公分,求作用於導體的電磁力大小牛頓及方向?
 - (A) 4 NT, 向上
 - (B) 4 NT, 向下
 - (C) 1 NT, 向上

(D) 1 NT, 向下

第2頁 共7頁

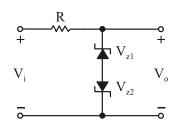
- 15. 直流發電機電樞繞組的感應電勢爲?
 - (A) 交流電
 - (B) 直流電
 - (C) 交、直流均有
 - (D) 視機型而定
- 16. 有一台 Y 接三相同步發電機供應三相負載,發電機每相之感應電勢爲 $220 \angle 0^\circ$ V ,省略電樞電阻,負載端之相電壓爲 $200 \angle -30^\circ$ V 。已知發電機輸出之三相實功率爲 6 kW,則其每相之同步電抗値應爲若干 Ω ?
 - (A) 10Ω
 - (B) 11Ω
 - (C) 12Ω
 - (D) 13 Ω
- 17. 有關電動機啓動之敘述,下列何者錯誤?
 - (A) 直流差複激電動機啓動時,應將串激場繞組短路
 - (B) 單相雙值電容式感應機,離心開關於轉速達同步轉速 75%時將啟動電容切離啟動繞組
 - (C) 三相同步電動機啟動時,轉子應先加入直流激磁
 - (D) 直流串激電動機啓動時,應注意負載大小,以避免轉子飛脫現象
- 18. 有一部四相混合型步進馬達,轉子齒數爲 25 齒,則步進角度 θ 爲多少?
 - (A) 14.4°
 - (B) 7.2°
 - (C) 1.8°
 - (D) 3.6°

第二部份:電子學實習

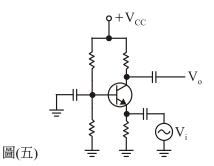
- 19. 有關半導體的敘述,下列何者不正確?
 - (A) 矽(Si)、鍺(Ge)皆為本質半導體
 - (B) 摻雜 5 價元素磷(P)或砷(As)加入本質半導體,可將此本質半導體變爲 N 型半導體
 - (C) N型半導體多數載子爲電子
 - (D) 摻雜 3 價元素可將本質半導體變成 P 型半導體, 3 價元素所扮演的角色為施體(Donor)
- 20. 如圖(三)所示電路,二極體爲理想二極體,試求電路中電流 I 爲多少?

(B) 3 mA

(C) 5 mA


(D) 7 mA

- 2V 0 4V 0 6V 0 8V 0 1 \mathbb{R}^{1} $\mathbb{R}^{$
- 21. 家用的交流電源 $110 \text{ V} \cdot 60 \text{ Hz}$ 經過 10:1 的變壓器降壓後,再用二極 體做全波整流供給負載 R_L ,若用三用電錶的 DCV 檔位測量整流後的 電壓値,則三用電錶的指示約爲多少?
 - (A) 10 V
 - (B) 9 V
 - (C) 8 V
 - (D) 7 V

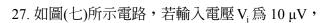

共7頁 第3頁

圖(四)

- 22. 如圖(四)所示電路,若稽納二極體爲理想二極體,且 $V_{z1} = 5 V$ 、 $V_{z2} = 10 V$,當 $V_{i} = 12 V_{(p-p)}$ 時,求輸出電壓的範圍爲多少?
 - (A) $-6 \text{ V} \sim 5 \text{ V}$
 - (B) $-10 \text{ V} \sim 5 \text{ V}$
 - (C) $-6 \text{ V} \sim 6 \text{ V}$
 - (D) $-5 \text{ V} \sim 10 \text{ V}$

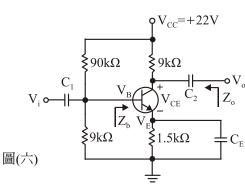
- 23. 欲量測電晶體的 β 值,應將三用電錶切至歐姆檔的哪一個檔位?
 - (A) $R \times 1$
 - (B) $R \times 10$
 - (C) $R \times 1 k$
 - (D) $R \times 10 k$
- 24. 有關雙極性接面電晶體(BJT)之敘述,下列何者不正確?
 - (A) BJT 當作開關使用時,BJT 是操作於飽和區與截止區
 - (B) BJT 的基極越厚,則β越大
 - (C) BJT 的射極摻雜濃度最高
 - (D) 屬於電流控制元件
- 25. 如圖(五)所示電路, V, 爲輸入, V。爲輸出, 則下列敘述何者不正確?
 - (A) 共基極組態放大電路
 - (B) 輸入與輸出同相位
 - (C) 具有高電流增益
 - (D) 輸出阻抗高

26. 如圖(六)所示電路,假設電晶體的 $V_{BE} = 0.7 \, \text{V} \times \beta = 99$,

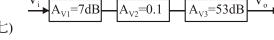

熱電壓 $V_T = 25 \text{ mV}$,試計算 Z_b 及 A_V 各約為多少?

(A)
$$Z_b = 25 \Omega \cdot A_V = -100$$

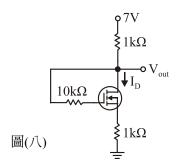
(B)
$$Z_b = 250 \Omega \cdot A_V = -100$$


(C)
$$Z_b = 2.5 \text{ k}\Omega \cdot A_V = -360$$

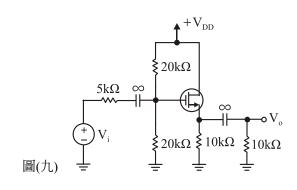
(D)
$$Z_b = 25 \text{ k}\Omega \cdot A_V = -360$$


請問下列敘述何者正確?

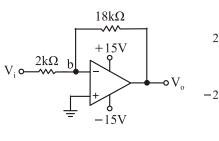
- (A) 總電壓增益為 1000
- (B) 總電壓增益為 6 dB
- (C) 輸出電壓為 1 mV
- (D) 輸出電壓爲 1 V


圖(七)

- 28. 有關 MOSFET 之敘述,下列何者**不正確**?
 - (A) MOSFET 為電流控制元件
 - (B) 可分空乏型與增強型兩種
 - (C) 空乏型 MOSFET 有預設通道
 - (D) MOSFET 為單極性電晶體

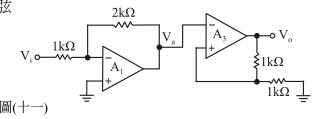


第4頁 共7頁

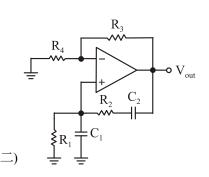

- 29. 如圖(八)所示電路,其中 V_T =1 V 、 K = 0.5 mA $/V^2$ 、 g_m = 2 mA /V , 則電晶體的 V_{GS} 及 I_D 約爲何値?
 - (A) 2 V \ 2.5 mA
 - (B) 3 V \ 2 mA
 - (C) 7 V \ 1.5 mA
 - (D) 8 V \ 1 mA

- 30. 如圖(九)所示電路,假設電晶體之 $g_m = 0.6 \text{ mA/V}$, r_{ds} 可忽略不計,試求電壓增益 A_V 約爲多少?
 - (A) $\frac{4}{5}$
 - (B) $\frac{3}{4}$
 - (C) $\frac{2}{3}$
 - (D) $\frac{1}{2}$

- 31. 有關 741 理想運算放大器之敘述,下列何者不正確?
 - (A) 輸入端爲差動放大器
 - (B) 輸出爲第6腳
 - (C) 開迴路電壓增益為 0
 - (D) 輸入阻抗無限大
- 32. 如圖(十 a)所示電路,若 V_i 的波形如圖(十 b), 則當 V_i = 2 V 時,b 點電壓爲多少?
 - (A) 0.3 V
 - (B) 0.4 V
 - (C) 0.5 V
 - (D) 0.6 V



圖(十 a)



圖(十 b)

- 33. 如圖(十一)所示電路,假設 OPA 皆爲理想運算放大器, 其輸出飽和電壓爲 $\pm 15\,\mathrm{V}$,若輸入爲 $\mathrm{V}_{\mathrm{i}(\mathrm{p-p})}=6\,\mathrm{V}$ 之正弦
 - 波,則輸出波形爲何?
 - (A) 工作週期 25%的方波
 - (B) 工作週期 50%的方波
 - (C) 工作週期 75%的方波
 - (D) 直流波形

- 34. 如圖(十二)所示電路,假設 OPA 皆爲理想運算放大器,若 R_1 = R_2 = R , C_1 = C_2 = C , R_3 = 10 k Ω ,試求在巴克豪森準則下,使電路產生振盪的 R_4 值爲何?
 - (A) $2 k\Omega$
 - (B) $5 k\Omega$
 - (C) $10 \text{ k}\Omega$
 - (D) $20 \text{ k}\Omega$

共7頁 第5頁

 2Ω

2Ω\$

≸1Ω

第三部份:基本電學實習

- 35. 小明在實習課欲使用三用電表量測電阻値時,發現指針能偏轉但是卻不能做歸零調整,請問是何種原因?
 - (A) 內部電池電力不足
 - (B) 保險絲燒毀
 - (C) 選擇開關損毀
 - (D) 表頭線圈損毀
- 36. 如圖(十三)所示電路,求E=?
 - (A) 7 V
 - (B) 9 V
 - (C) 11 V
 - (D) 13 V
- 37. 如圖(十四)所示電路,負載 R_L兩端之最大功率爲何?
 - (A) 15 W
 - (B) 20 W
 - (C) 25 W
 - (D) 30 W

圖(十三)

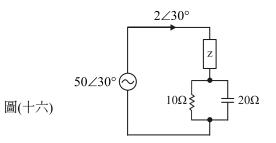
圖(十四)

10Ω≸

- 38. 規格爲 2-4Y 的壓接端子,其中 2 是代表何種意義?
 - (A) 螺絲孔直徑
 - (B) 螺絲孔半徑
 - (C) 導線剝線長度
 - (D) 導線線徑
- 39. 如圖(十五)所示屋內配線器具符號,代表下列何種器具?
 - (A) 專用插座
 - (B) 接地型專用單插座
 - (C) 一般插座
 - (D) 接地型單插座

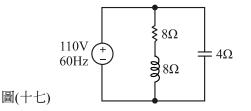
- 40. 被接地線是以下列何種顏色來區分?
 - (A) 紅色

(B) 白色


(C) 綠色

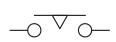
(D) 黑色

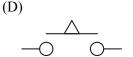
- 41. 下列何者非設備接地的目的?
 - (A) 提高供電穩定
 - (B) 提高功率因數
 - (C) 防止電器損壞
 - (D) 防止觸電
- 42. 示波器螢幕其縱向與橫向各爲幾大格(1 大格爲 1 公分)?
 - (A) 4格、5格
 - (B) 5格、4格
 - (C) 8格、10格
 - (D) 10格、8格


第6頁

- 43. 如圖(十六)所示電路,請問阻抗 Z 應爲多少?
 - (A) 17 + j4
 - (B) 17 j4
 - (C) 15 j20
 - (D) 15 + j20


44. 交流 RLC 並聯電路當發生諧振時,其電路阻抗值爲何?


- (A) 最大
- (B) 最小
- (C) 0
- (D) ∞
- 45. 如圖(十七)所示電路,試求此電路的諧振頻率爲多少 Hz?
 - (A) 120 Hz
 - (B) 84 Hz
 - (C) 42 Hz
 - (D) 30 Hz


46. 某負載功率為 6 kW, 其功率因數為 0.6 滯後, 現欲將功率因數提高到 0.8 滯後, 試問並聯電容器之容量 為多少?

- (A) 0.5 kVAR
- (B) 1.5 kVAR
- (C) 2.5 kVAR
- (D) 3.5 kVAR
- 47. 有關瓦時計的敘述,下列何者不正確?
 - (A) 電壓線圈與電源線路並聯
 - (B) 電壓線圈匝數多且線徑細
 - (C) 電流線圈匝數多且線徑粗
 - (D) 電流線圈與負載串聯
- 48. 電熱器具所使用的電熱線是由下列何種材質的導線所製成?
 - (A) 鎳鉻合金線
 - (B) 鋼心鋁線
 - (C) 軟抽銅線
 - (D) 硬抽銅線
- 49. 日光燈順利點燈之後,如果將啟動器移除,則日光燈將發生下列何種變化?
 - (A) 馬上熄滅
 - (B) 安定器損壞
 - (C) 持續發亮
 - (D) 閃爍不定
- 50. 在通電延遲式限時電驛(Timer Relay)中,代表延時動作、瞬時復歸之 a 接點符號爲何?

共7頁